skip to main content


Search for: All records

Creators/Authors contains: "Xiao, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The detection of the 11.3$\, {\rm \mu m}$ emission feature characteristic of the Si–C stretch in carbon-rich evolved stars reveals that silicon carbide (SiC) dust grains are condensed in the outflows of carbon stars. SiC dust could be a significant constituent of interstellar dust since it is generally believed that carbon stars inject a considerable amount of dust into the interstellar medium (ISM). The presence of SiC dust in the ISM is also supported by the identification of pre-solar SiC grains of stellar origin in primitive meteorites. However, the 11.3$\,\mu {\rm m}$ absorption feature of SiC has never been seen in the ISM, and oxidative destruction of SiC is often invoked. In this work, we quantitatively explore the destruction of interstellar SiC dust through oxidation based on molecular dynamics simulations and density functional theory calculations. We find that the reaction of an oxygen atom with SiC molecules and clusters is exothermic and could cause CO-loss. Nevertheless, even if this is extrapolable to bulk SiC dust, the destruction rate of SiC dust through oxidation could still be considerably smaller than the (currently believed) injection rate from carbon stars. Therefore, the lack of the 11.3$\,\mu{\rm m}$ absorption feature of SiC dust in the ISM remains a mystery. A possible solution may lie in the currently believed stellar injection rate of SiC (which may have been overestimated) and/or the size of SiC dust (which may actually be considerably smaller than submicron in size). 
    more » « less
  2. ABSTRACT Extremely elongated, conducting dust particles (also known as metallic ‘needles’ or ‘whiskers’) are seen in carbonaceous chondrites and in samples brought back from the Itokawa asteroid. Their formation in protostellar nebulae and subsequent injection into the interstellar medium have been demonstrated, both experimentally and theoretically. Metallic needles have been suggested to explain a wide variety of astrophysical phenomena, ranging from the mid-infrared interstellar extinction at $\sim \,$3–8$\, {\rm \mu m}$ to the thermalization of starlight to generate the cosmic microwave background. To validate (or invalidate) these suggestions, an accurate knowledge of the optics (e.g. the amplitude and the wavelength dependence of the absorption cross sections) of metallic needles is crucial. Here we calculate the absorption cross sections of iron needles of various aspect ratios over a wide wavelength range, by exploiting the discrete dipole approximation, the most powerful technique for rigorously calculating the optics of irregular or nonspherical grains. Our calculations support the earlier findings that the antenna theory and the Rayleigh approximation, which are often taken to approximate the optical properties of metallic needles, are indeed inapplicable. 
    more » « less
  3. Abstract

    The superτ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035cm−2·s−1or higher. The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025